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Today's technology gives us a great opportunity to complement the subtlety of
human thought with the power and accuracy of modern computers. In this
presentation I consider fundamental modes of human thinking to see how enactive,
visual and symbolic methods can be used in a versatile way with the support of well-
designed software. My analysis focuses on the use of symbols to think about
mathematics and to do mathematical procedures and how visual enactive software
can be used to enhance our conceptual thinking processes. In particular, I consider
a theoretical cognitive development in arithmetic, algebra and the calculus and
reflect on empirical research to show how the computer can be used both well and
badly in supporting mathematical learning.

Introduction
The turn of a century is a time for looking forward and reflecting on the past.

Given this is the turn of the millennium, perhaps we should begin by looking back long
into our previous history. We stand now at a time of great innovation in technology,
moving on at an exciting, even bewildering pace. But as we do so, we should reflect that
the human brain which conceives these new ideas was not designed top-down to be able
to process complex mathematical thoughts. It has evolved from the brain of an upright
hunter-gatherer that lived in the grasslands of Africa over a hundred thousand years ago.
Our sophisticated brain is therefore built on primitive perception and physical action. It
may even be, as is contended by Lakoff and Johnson (1999) that all our thoughts are
embodied, in that they build from our human interaction with the world.

The major part of our brain is taken up with vision, perception of space and
causing actions on what we see and sense outside us. We have opposed thumbs that
allow us to manipulate objects in subtle ways. By a happy accident, our upright stance
moves our larynx into a position that enables us to complement our mental powers by
making sophisticated sounds that give us language. This provides a formidable facility
for constructing our thoughts and communicating them to others. In recent millennia,
and in particular, in the period since the invention of calculus in the seventeenth
century, modern homo sapiens has developed a method of writing and manipulating
mathematical symbols. These symbols are peculiarly fitted to the working of the brain.
They are compact tokens that allow us to think about them and the relationships
between them, and they can be manipulated, using the brain's natural ability to practice
a sequence of activities until they become automatic and need little conscious attention
to carry them out. In this way, the symbols of arithmetic, algebra and symbolic calculus
enable us both to think about mathematics and also to do mathematics by way of
calculation and manipulation of symbols.

This sophisticated symbolic ability provides us with a sequential/verbal-symbolic
mode of thinking complemented by our more primitive holistic visuo-spatial senses.
The term versatile thinking was used by Tall and Thomas (1991, p. 130), following
Brumby (1982), to refer to the "complementary combination of both modes, in which
the individual is able to move freely and easily between them, as and when the
mathematical situation renders it appropriate."
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Technology offers new ways of operation to utilise our versatile thinking
processes in more powerful ways. The computer can perform algorithms at enormous
speed with great fluency and accuracy, but it lacks the brains multi-processing ability to
put old ideas together in new ways. Computer software not only offers arithmetic
computation and symbolic manipulation, the results of these calculations can be
represented visually, allowing the versatile brain to use visually presented results to see
conceptual linkages.

In this presentation, I therefore focus on various aspects of mathematics,
involving symbolic concepts and processes on the one hand and global visual
representations on the other. In particular I shall consider how arithmetic, algebra and
the calculus benefit the individual thinker by being provided in a computer environment
that enhances and encourages versatile thinking.

Symbols and technology
The algorithms of arithmetic proved very amenable to being programmed and we

have had four-operation calculators with us for most of the last half of the last century.
In the nineteen-eighties numeric calculation on computers became enhanced by
symbolic manipulation. There was widespread belief that the computer could do away
with all the unnecessary clutter of calculation and manipulation allowing the individual
to concentrate more on the essential ideas. Computers and calculators in business
remove much of the tedium of calculation. An individual with no arithmetic skills
beyond typing in numbers can enter the cost of items in a shop and the machine will
give the total and even issue the correct change. Furthermore entry of information can
be simplified by scanning bar-codes and stock-control can be handled by referring the
items sold to the stock database to allow replacements to be ordered automatically.
Soon even more of the economy will be taken over by technological means.

However, simply using technology, does not necessarily mean we understand
what is happening. We may even lose some of the facility we had before. Hunter,
Monaghan and Roper (1993) found that a third of the students using a computer algebra
system could answer the following question before the course, but not after:

`What can you say about u if u=v+3, and v=1?'

As the students had no practice in substituting values into expressions during the
course, the skill seems to have atrophied. It is a warning given by the old adage `if you
don't use it, you lose it,' a saying supported by physical evidence in the brain that
unused pathways will tend to decay.

Other evidence also suggests that the use of symbol manipulators to reduce the
burden of manipulation may just replace one routine paper-and-pencil algorithm with
another even more meaningless sequence of keystrokes. Sun (1993)reported in
Monaghan, Sun & Tall (1994)describes an experiment in which nine highly able
16/17 year old students taking a 'further mathematics' course had unlimited access to
the software Derive. When asked to find a limit such as

lim
2x + 3

x +2
eight out of nine Derive students used the software procedure to produce they answer
`2'. They claimed they knew no other method, even though they had been shown the
technique of dividing top and bottom by x to get



lim2x+3 = lim
2+(31x) 2+0

x+2 x-4-1+(2/x) 1+0

Meanwhile, in a comparable group of 19 students using only paper-and-pencil
methods, twelve used the simplification method given above, three substituted various
numbers and four left it blank. This slender evidence intimates two things. First, almost
all the Derive gudents obtained the 'correct result', whereas a considerable minority of
the others failed, showing the power of the software. Second, the Derive students
appeared simply to be carrying out a sequence of button presses, showing the distinct
possibility of using technology with a lack of conceptual insight.

This phenomenon was repeated when the students were :asked to explain the
meaning of

lim
f(x + h) f(x)

h->0

Here both the Derive group and one of the paper-and-pencil groups had been part of a
discussion of the meaning of the notation in their mathematics lessons. All of the non-
Derive group gave a satisfactory theoretical explanation of the concept. None of the
Derive group gave any theoretical explanations. Four of them gave examples by
replacing fix) with a polynomial and going through the sequence of key-strokes to
calculate the limit. Although the curriculum may include initial theoretical activities
(and most introductions to calculus begin with some discussion of the limit concept),
what the students learn is dependent on the way they sense and interpret those activities
that they are actually involved with at the time. In the case of these students using
symbol manipulators, they have routinized the button-pressing activities and carry them
out as automatic routines.

From this data we can see that students learn what they do. If they press buttons,
they learn about button-pressing sequences. What is therefore important is to build a
sense of meaning through reflection on the underlying mathematics. It is here that a
versatile approach may prove of real value.

Sensori-motor and visual aspects
Underlying the more conscious aspects of doing mathematics, there are other,

deeper, human activities that provide an essential basis for all thought. The most
primitive of these involve sensori-motor activity (physical sensations and bodily
movement) and visual imagery. They play an important part in the computer interface.
For example, the sensori-motor system allows decisions to be implemented intuitively
using the mouse and keyboard.

These low-level cognitive actions also provide support for high-level theoretical

, concepts. Figure 1 shows software to build graphical solutions to (first order)
differential equations by using the mouse to move a small line segment whose slope is
determined by the differential equation. A click of the mouse deposits the segment and
the user may fit line segments together to give an approximate solution.

Such an activity can be performed intuitively with little knowledge of the theory
of differential equations. Yet it already carries in it the seeds of powerful ideas about
possible existence theoremsthat a typical first order differential equation will have a
unique solution through each point, and following the changing direction will build into
a global solution curve. By considering selected examples it is be possible to look at the
wider view of what happens to a whole range of solution curves and to see their



behaviour. In this way an intuitive interface can give advance organisers for formal
theory, especially to those individuals who naturally build on visual imagery.

Symbolism as a mental pivot between process and concept
Symbols used in a range of mathematical contexts give Homo sapiens an

incredibly simple way of dealing with quantities for calculation, problem solving and
prediction. Many symbols simply act as a pivot between the symbol conceived as a
concept (such as number) and a process (such as counting) (Figure 2).

symbol process concept

4 counting number

3+2 addition sum

3 subtract 3 (3 steps left) negative 3

3/4 sharing/division fraction

3+2x evaluation expression

v=s/t ratio rate

.7-1(x) assignment function

dy /dx differentiation derivative

J
f(x) dx integration integral

x2 4)lim(
tending to limit value of limit

x*2 X 2

E/nz
n=1

(xi, x2, -2 xn) vector shift point in n-space

_ _ Sn permuting {1,2,...,0 element of Sn

Figure 2. Symbols as process and concept

Gray & Tall (1994) refer to the combination of symbol representing both a process and
the output of that process as a procept (Figure 3).

process
symbol procept

concept

Figure 3: The symbol as pivot between process and concept forming a procept

The procept notion has been given increasingly subtle meaning since its first
formulation (Gray & Tall, 1991). It is now seen mainly as a cognitive construct, in
which the symbol can act as a pivot, switching from a focus on process to compute or
manipulate, to a concept that may be thought about as a manipulable entity. We believe
that procepts are at the root of human ability to use mathematical ideas in arithmetic,
algebra and other theories involving manipulable symbols. They allow the biological
brain to switch effortlessly from thinking about symbols as concepts to using them for
doing mathematical processes in a minimal way.

There are several different ways in which the symbolism is used :



(a) a procedure consists of a finite succession of actions and decisions built into a

coherent sequence. It is seen essentially as a step-by-step activity with each step

triggering the next.

(b) the term process refers to when the procedure is conceived as a whole and the

focus is on input and output rather than the particular procedure used to carry out

the process. It may be achieved by n procedures (n>0) and affords the possibility

of selecting the most efficient solution in a given context.

(c) a procept requires the symbols to be conceived flexibly as processes to do and

concepts to think about. This allows for more powerful mental manipulation and

reflection to build new theories.

Different uses of symbolism give rise to differing levels of flexibility and ability

to think mathematically (Figure 4). This is not to say that procedural thinking does not

have its value. Indeed, much of the power of mathematics lies in its algorithmic
procedures. However, a focus on procedures alone, without conceptual linkages

between them, leads fo increasing cognitive stress as the individual learns more and

more disconnected pieces.

The difficulty in thinking conceptually seems to increase throughout the

curriculum. My own perception of these difficulties is that the underlying procepts act

in very different ways, so that the learner, who has internal methods of processing the

ideas, finds new ideas strangely conflicting with inner beliefs. This, I believe, leads to a

lack of connections and the desire to learn procedures solely to pass examinations.

This spectrum has been beautifully demonstrated by DeMarois (1998) who

worked with students using graphing calculators in a remedial college pre-algebra

course. They were asked to consider the problem given in Figure 5, relating to two

procedural

Spectrum of outcomes

proceptual

-: Toperform To THINK

60:he:notice about
s: ,flailtly &. mathematics

tricteatly. symbolically
. .,

Progress

.2r
Process

Procedure(s)

."FrIProcept
Process(es)

Pms:.:x"ircrs)

Procedure

Sophistication
of development

Figure 4. A spectrum ofperformance in the carrying out of mathematical processes
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functions having different internal procedures but the same input-output relationship.

Function
Chris

Input

Multiply by 3
Add 6

4H--

Output

Function
Lee

Input

I 11r

Add 2 to the input
Multiply the sum by 3

ylv

Output

Figure 5. Write the outputs of these two function boxes
and say if they are the same function.

The responses given by students achieving grades A, B, C showed characteristics
of the three above distinct levels of sophistication. They were as follows:

Grade A Student: 3x+6, 3(x+2)
Yes, if I distribute the 3 in Lee, I get the same function as Chris. (procept)

Grade B Student: x3+6, (x+2)3
Yes, but different procedures (corresponding to our notion of process)

Grade C Student: 3x+6, x+2 (3x)
No, you come up with the same answer,
but they are different processes (corresponding to our notion of procedure)

(DeMarois, 1998, pp.171, 174-5)

The grade A .student is responding in a manner which shows that she can
manipulate the expressions and see that one is the same as the other. Her fluency of
manipulation of the expression here and in other contexts reveals her flexible ability
operating with expressions as procepts. Students B and C write the algebra in
idiosyncratic ways, with B following the precise verbal order and C using the algebraic
order for 3x+6 yet writing the second function expression in a way which can be read as
`x+2 (three times).' Although B and C use the terms procedure and process in their own
way, B says 'yes' (they are the same function) suggesting a process interpretation and C
says 'no' (they are not the same function) suggesting a procedural interpretation.

Fundamental differences in proceptual structure
Despite the power of procepts, students often have difficulty with them. This is in

part often due to their working at a level which causes them greater cognitive stress, for
example, working at a procedural level and being unable to put all the ideas together to
be able to cope with more complex problems. However, there is also another highly
significant factor. In various different parts of the curriculum, symbols as process and
object operate in very different ways. Thus the student who may very well have a good
grasp of the ideas in one context suddenly finds that things are confusing at the next
stage. This may be illustrated by looking at some of the different types of procept in
arithmetic, algebra and limits.

(1) arithmetic procepts, 5+4, 3x4, +24, 1.54+2.3, all have built-in algorithms to
obtain an answer. They are computational, both as processes and even as
concepts. For instance in the sum 8+6, the concept 6 can be linked to the
operation 2+4, which can be combined in the sum 8+2+4 to give 10+4 which is
14. A deeper analysis would reveal more differences between operations with
whole numbers, negative numbers, fractions and decimals.
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(2) algebraic procepts, such as 2+3x, can only be. evaluated if the value of x is
known. Thus an algebraic procept has only a potential process (of numerical
substitution) and yet the algebraic expressions themselves are expected to be

treated as manipulable concepts using the usual algebraic rules.

Meaningful power operations such as

23 x22 =,(2 x 2 x 2) x (2 x 2) = 25

can act as a cognitive basis for the power law

xm x x" x"'"

valid for all real x and for whole numbers m, n. A student can have a meaningful

interpretation of this symbolism, yet be totally confused when the symbols are used in a

different way as:

(3) implicit procepts, such as the powers x;, x° or x-1, for which the original
meaning of xn no longer applies, but is implicit in the generalised power law.

Attempting to give the 'same meaning' to these ideas does not work, for we can
hardly speak of 'half an x multiplied together', or `no xs multiplied together' (surely no

xs must give zero). Thinking of as 'minus one xs' seems as foolish as talking about

`minus one cows'. These powers can, however, be given an implicit meaning by
assuming the power law as an axiomatic basis for deduction. Thus, for m = n = Y2, we

get

XX X XX .7C

from which we may deduce that xY2 = Of course, such a meaning is being deduced

from a law that we do not know is true, but one that we assume as an axioma new
way of doing mathematics that is powerfUl for those willing and able to follow it
through, but puzzling for those who attempt to give the symbols the same meaning as

before.

Later examples in the curriculum are:
3 3

1
(4) limit procepts, such as Jim

X a or 2 27. These have potentially infinite
x-4. x a .1 n

processes 'getting close' to a limit value, but this may not be computable in a
finite number of computations. Limits are often conceived as 'variable
quantities' which get arbitrarily close to a limiting value, rather than the limit

value itself.
( X2e xd )

(5) calculus procepts, such as or f
0

ms mxcosic dx . These are more
clx

familiar in the sense that they (may) have finite operational algorithms of
computation (using various rules for differentiation and integration).

Although limit procepts. are often introduced as the first idea in calculus, we shall

see that this use does not fit with the embodied brain that invariably interprets the

notion of limit as a potentially infinity process rather than a manipulable concept.
Instead the students are much happier with calculus procepts that involve a process of
computation and an answer, albeit in the form of an expression rather than a number.
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The principle of selective construction
To reduce the cognitive strain on the learner in the mathematics curriculum using

computers, I formulated the Principle of Selective Construction (Tall, 1993). This
proposes the design of software that embodies selected aspects of the theory for the
learner to explore whilst the computer carries out other essential processes internally. It
can be accomplished in a range of ways. For instance, the approach to differential
equations advocated earlier (Figure 1) provides a manipulable visual representation
where the computer carries out the algorithms and draws the pictures leaving the student
to concentrate on building a solution. The interface enables the user to gain an
embodied visuospatial sense of the theory in which hand and eye coordinate to build the
direction of the solution curve. Having gained this insight, the student could then profit
by focusing on other aspects, such as the internal numerical procedures to produce
approximate solutions, or the study of available symbolic methods to give solutions in
particular cases.

Another use of the principle of selective construction arises in Michael Thomas's
approach to the introduction of algebra (Thomas, 1988; Tall and Thomas, 1991). In one
activity the pupils enact a physical game, away from the computer, using two large
sheets of cardboard. One represents 'the screen' on which instructions are given. The
other is 'the store' on which squares are drawn which can be labelled with a letter for
the variable and the numerical value stored inside. Typical instructions might be to put
A=2 (place a number 2 in a box marked 'A') then PRINT A+3 (find the number in the
box marked 'A' and print out the sum of it and 3, to output 5). This concentrates on the
process aspect of evaluation of expressions and uses an embodied approach that builds
on human activity. On the other hand, writing simple programs on the actual computer,
such as INPUT A: PRINT 2*(A+1), 2*A+2, gets the computer to carry out the process
of calculation so that the student can concentrate on the equivalence of the same outputs
from different procedures of calculation. This combination of separate focus on symbol
as process and as (equivalent) concepts proved to give a long-term improvement in
conceptualization of expressions as manipulable concepts (Tall & Thomas, 1991).

In the next few sections we look at the developing curriculum in arithmetic,
algebra and the calculus. In each case we begin with the cognitive processes involved
and then consider how the computer can be used to promote versatile thinking using the
principle of selective construction.

Long-term considerations in arithmetic, algebra and calculus

Manipulating symbols in arithmetic
Whole number arithmetic has a fundamental proceptual structure in which the

number symbol has a dual role as number concept and counting process (Gray & Tall,
1994). Addition is successively compressed from the triple 'count-all' process (count
one collection, count the other, count the two together) through the transition of the
double counting process of 'count-both' (count-one number then count-on the second)
to the single 'count-on' process (count-on the second number starting from the first).
Some facts are remembered (as 'known-facts') and may, or may not, be used flexibly to
`derive facts' from those already known (for instance, deriving 8+6 from
8+2+4=10+4=14 or 23+5=28 as 20+3+5, and so on). Gray Pitta, Pinto & Tall (1999)
show how there is a bifurcation in strategy between those who cling to the counting
operations on objects and those who build (to a greater or lesser extent) a conceptual
hierarchy of manipulable relationships between process and concept. The former
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become imprisoned in thinking about manipulating objects in a way which does not
generalise to larger numbers whilst the latter have an internal engine to derive new facts

from old that forms a foundation for mental arithmetic.

The successive compression from triple-counting to the single count-on, to the
flexible use of remembered known facts is a long journey taking several years to
become efficient in arithmetic. The use of calculators and computers in early
mathematics eas been perceived by the British government and their experts as being

less successful than it might be. So much so that, in the English National Curriculum,
the use of calculators with young children has been discouraged in the hope that their
absence will enable children to build mental arithmetic relationships.

Perhaps this is more to do with the misuse of the calculator (for performing
calculations without having to think) than it is to any inherent defect in the apparatus
itself. Used well, to reflect on mathematical ideas, the calculator can be very beneficial

as Gray and Pitta (1997) showed in their work with a slow-learner having difficulties

with arithmetic.

Emily, aged 8, was identified as one of The first one
the weakest four children in arithmetic in a
year group of 104. She 'seemed to associate
counting with fingers with the use of a
particular sequence of fingers' and she found
this difficult. She explained, 'sometimes I get
into a big muddle with them ... I am not
concentrating on the sum. I am concentrating Figure 6. Emily's image of 4-3
on getting my fingers right which takes a
while.' When she did simple arithmetic mentally, she imagined manipulating arrays of
counters, for instance, she explained .the sum 4-3, saying ... there's two dots above
each other and then there's ... the first one the one below and the next to it are being
taken away and there is only the first one left.' (Figure 6.) With these direct
manipulations of fingers or mental objects, she was under considerable cognitive stress
handling small numbers and had great difficulty with numbers larger than ten. At this
stage she clung to counting and was a candidate for long-term failure. However, Gray
and Pitta planned a series of activities using a graphic calculator which displayed both

the arithmetic operations to be carried out and
the numerical results. (Figure 7).

Emily was given a personalised
workbook asking her to find ways to make 9,
or to make 9 starting with 4, or with 10. Her
combinations included standard ones such as 4

+ 5, 6+9, but also more complex ones such as
4+4+1, 5+6-2, 5+1+1+2. In her interviews she
was encouraged to talk about her discoveries
without using the computer. Only once did she
ever refer to seeing 'dots' and nine months
later she was operating mentally, seeing
numbers 'flash' into her mind. This insight shows her making strides towards
compression that are enhanced by her calculator work. She was seeing relationships
between numbers in her mind's eye.

4+5

4+4+1

3+2+4

9

9

9

Figure 7. Ways of making 9
on a graphic calculator
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The principle of selective construction is implicit in Gray and Pitta's work with
Emily. The software performs the calculation and Emily can concentrate on the
relationships without having to carry out the intervening counting processes. Were she
to continue to focus on counting, it would have become too onerous for her to develop
much further.

This imaginative use of the calculator shows the poverty of the UK numeracy
strategy to discourage the use of calculators for young children. It is not the technology
that is at fault, but the use to which it is put.

Proceptual problems in algebra
Long before the notion of `procepe was formulated, students were noted to have

difficulty conceiving an expression such as `7+x' as the solution to a problem
aphenomenon described by Collis (1972) as 'lack of closure'. Davis, Jockuscb and
McKnight (1978) remarked similarly that 'this is one of the hardest things for some
seventh-graders to cope with; they commonly say "But how can I add 7 to x, when I
don't know what x is?"' Matz (1980) commented that, in order to work with algebraic
expressions, children must 'relax arithmetic expectations about well-formed answers,
namely that an answer is a number.' Kieran (1981) similarly commented on some
children's inability to 'hold unevaluated operations in suspension.' All of these can now
be described as the problem of manipulating symbols thatfor the studentsrepresent
potential processes (or specific procedures) that they cannot 'do', yet are expected to
treat as manipulable entities. Essentially they see expressions as unencapsulated
processes rather than manipulable procepts.

As mentioned earlier, this was tackled by Thomas (1988) using a combination of
physical activity to give an embodied sense of the process and the use of the computer
to focus on the relationships between the concepts.

In the work of McGowen (1998), DeMarois (1998) and Crowley (2000),
American college students using graphic calculators to support their development of
algebra show the spectrum of performance from procedural competence to flexible use
of mental linkages. By getting her students to draw concept maps of their knowledge at
various points in the course, McGowen found that the less successful simply focussed
on the current work, attempting to use procedures as they were given, but the more
successful built concept maps which built incrementally on previous work to give a
highly integrated conceptual system. One successful student explained his
methodology:

While creating my [final] concept map on function, I was making strong connections
in the area of representations. Specifically between algebraic models and the graphs
they produce. I noticed how both can be used to determine the parameters, such as
slope and the y-intercept. I also found a clear connection between the points on a
graph and how they can be substituted into a general form to find a specific
equation. Using the calculator to find an equation which best fits the graph is helpful
in visualizing the connection between the two representations. I think it's interesting
how we learned to find finite differences and finite ratios early on and then
expanded on that knowledge to understand how to find appropriate algebraic
models. (McGowen and Tall, 1999, p. 284).

There is evidence that this concentration on making links in the concepts in a
course on straight line graphs using graphic calculators can radically affect performance
on later courses. Crowley (2000, pp. 209, 210) found that those who continued to be
successful 'had readily accessible links to alternative procedures and checking
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mechanisms' and 'had tight links between graphic and symbolic representations'. They
succeeded even though they 'made a few execution errors.' Others who succeeded in
the earlier course but 'had serious difficulties with the next,' had passed the first course

whilst showing underlying weaknesses in conception. 'They had links to procedures,

but did not have access to alternate procedures when those broke down. They did not

have routine, automatic links to checking mechanisms. They did not link graphical and
symbolic representations unless instructed to do so. ... They showed no evidence that
they had compressed mathematical ideas into procepts.'

Proceptual problems in the concept of limit

It has long been known that students have difficulty coming to terms with the

limit concept presented at the beginning of a calculus course. The early research on this
topic is summarised in Cornu (1991). The conceptual difficulties can be clearly
formulated using the notion of procept. At first a limit (say of a sequence of numbers) is

seen as a process of giving a better and better approximation to the limit value. This

process of 'getting close' but 'never reaching' the limit gives rise to the mental image of

a 'variable quantity that is 'arbitrarily small' or 'arbitrarily close' to a fixed quantity.
This may then lead to the construction of a mental object that is 'infinitely small'a
cognitive infinitesimal. Monaghan (1986) called this a 'generic limit'. It is a cognitive
concept wherein the limit object has the same properties as the objects in the sequence
which is converging to it. Thus in the sequence (1/n), all the terms are positive, so the
generic limit is positive. It is also arbitrarily small. This leads to a concept image of the
number line that has infinitesimal quantities included and is therefore at variance with
the formal definition of the real numbers.

Symbol manipulators use a variety of representations for numbers, including
integers, rationals, finite decimals, radicals such as 42, 1147, special mathematical
numbers such as 7E, e. Students conceive of different kinds of number in subtly different
ways. For instance they may be feel secure in 'proper numbers' such as whole numbers

and fractions. But they may regard infinite decimals, both repeating and non-repeating,

as 'improper numbers' which 'go on forever' (Monaghan, 1986). Procept theory
classifies these 'improper numbers' as 'potentially infinite' processes rather than as
number concepts. We therefore see that many students do not have a coherent view of
the number line. It is populated by a range of different kind of creatures, some familiar,

some less familiar, and some downright peculiar.

Reconstructing these views of numbers is not something that has proved at all
easy (Williams, 1991). My own consideration is that the potentially infinite process in

the limit procept causes great conceptual difficulty and I have preferred to attack the
design of the calculus curriculum by making the notion of limit implicit in the software,
whilst encouraging the student to focus visually on what is happening.

The calculus

Technology offers new ways of approaching the calculus in a versatile way which

are becoming widespread around the world. My own approach builds on using visual

software to give an embodied sense of the underlying mathematical concepts. There are
four procepts in the calculus: the notion of limit (in a variety of different forms), change
(function), rate of change (derivative), cumulative growth (integral). However, given
the evidence that the formal notion of limit is not a sensible place to start when students
are learning calculus, I concentrate on the last three (Figure 8).
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Procept

Change:

FUNCTION

doing calculating values

undoing solving equations

Rate of change:

DERIVATIVE

doing differentiation

undoing anti-differentiation, solving differential equations

Cumulative growth:

INTEGRAL

doing integration

undoing fundamental theorem of calculus

Figure 8. Three procepts in functions and calculus

If we analyse these in greater detail, we find that there is a spectrum of
approaches, from a real-world meaning of the terms, to various aspects that can be
represented on the computer in graphic, numeric and symbolic ways, and on to the
formal theory of analysis. Figure 9 shows my own analysis of the procepts and their
representation in the calculus, taken from Tall (1997).

The first column (real-world calculus) has been exemplified in computer software
by Kaput (see the SimCalc website http://tango.mth.umassd.edu). (The approach via
SimCalc allows the movement of a child to be tracked by a sensor and then displayed as
a graph to give a powerful embodied link between child and computer.) The final
column does not concern us here as it relates to the formal theory discussed in an
extension of this presentation (Tall, to appear) which carries the ideas of embodied
thinking and the use of technology through to formal mathematical thinking. I will
therefore concentrate on the three representations: graphic, numeric, symbolic.

Graphic representations on the computer already embody the principle of selective
construction. The numerical calculations that produce the pictures are performed
internally while the graphic software provides an environment for visuospatial
exploration. In a logical development, the numeric and symbolic would almost certainly
precede the graphic. In cognitive terms, a graphic approach to the calculus is part of a
versatile learning sequence. It enables the learner to visualise and conceptualise the
concepts in an embodied manner that can form a foundation for future development, be
it a technical support in applications, formal epsilon-delta analysis, or the infinitesimal
calculus of non-standard analysis.

In Figure 9, I have highlighted three parts of the graphic column: graphs, visual
steepness and area under the graph. It would be a nice ending to my presentation to be
able to show how a versatile use of these three conceptions can make the calculus
deeply meaningful. However, although there are great benefits from such an approach,
research has continually shown difficulties with the conception of function.

Mathematically the formal notion of function could not be simpler: there are just
two sets A and B and, for each element x in A, there is precisely one corresponding
element y in B which is denoted by the symbolf(x).



The inner workings of our embodied brain colour this simplicity with a wide

range of implied meanings linked to our perceptions and actions. This includes the idea

that functions always seeming to have a formula, and a graph with a familiar smooth

shape. In addition, experience with linear, quadratic, trigonometric and exponential

functions focus on a wide range of different properties for each family of functions. For

instance a linear function has an intercept and a slope that completely determine it.

Study of the quadratic function involves factorization and. 'completing the square'.

Trigonometric functions involve radians, the sign of trig functions in each quadrant,

relationships between sine, cosine and tangent, together with formulae for sin(A+B),

cos(A+B), tan(A+B), and so on. Exponential functions have the power law and the

.relationship with logarithms and their properties. The learner is,,therefore bombarded

more with the differences between all these examples than the underlying function

properties that they share. Essentially the function concept itself is hardly ever the focus

of attention. Instead the human brain makes links involving the special calculations and
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Figure 9. A spectrum of representations in functions and the calculus
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manipulations that are actually the main focus of study.

The plight of the function concept in terms of graphs is sealed by the research of
Cuoco (1994). The students he studied who had been taught using the traditional notion
of function as formula and graph hardly ever saw the graph as a process of assignment
(for given x, move up to the graph and across to the y-axis to read offf(x).) On the other
hand, he showed that programming functions in computer languages involves imagining
inputs, carrying out an internal process and giving an output. The name of the function
procedure allows it to be treated like a manipulable object.

The process usually associated with a graph is the process of drawing it, or tracing
along the curve from left to right. The approach used in SimCalc, with time as the
variable, therefore encourages a bodily sensation of seeing the covariation of, say,
distance with time. This therefore gives an embodied approach to the graphs of
functions, although there will need to be further development along the line to replace
the variable time and its human sense of duration for other variables.

A Graphic Approach to the Calculus begins with the notion of a graph
representing the relationship between an independent and dependent variable. The study
of straight line functions is a necessary pre-requisite to be able to see the gradient of the
function when the axes have equal scales and to be able to imagine that changing the
scales on the axes might change the visual slope in the picture, but not the numerical
value of the gradient as y-step over x-step.

Zooming in on a graph, retaining equal scales reveals that most of the graphs we
know look less curved the more we zoom in, until they look like a straight line under
high magnification. If a small square
centred on a point on the curve reveals
an approximate straight line when
magnified, moving the square along
the curve and noting the changing
gradient of the curve appeals to the
embodied idea of 'looking along the
curve and seeing its changing
gradient'. Thus, in one go, the student
can look along the curve and see the
gradient changing as a function of x.
(In the embodied sense that, as I point
at successive places on the graph, the
gradient can be seen to change as x
changes.)

Students are often quite
surprised when they see that a circlethe archetypal 'curved' curve is locally straight.
(Figure 10), but then, as they realize that the curvature gets less as the circle gets bigger,
this becomes less strange. Using software to magnify the curve can give graphic insight
into the phenomenon.

Many mathematicians who hear me say things this way are puzzled and/or angry.
For them the gradient must first be approached as a limit at a point, and then, when the
limit is achieved, the point is varied and the limit value at the point for all points is the
derivative function. For this reason, mathematicians often introduce the notion of 'local
linearity' which means finding a linear function at a point on the graph which is the best
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Figure 10. A circle is locally straight
(drawn with Tall et al., 1990)
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linear approximation to the graph. Frankly, this is far more complex. Local linearity is
defined first at a point in a functional symbolic manner, then the point is varied. Local
straightness is a purely embodied visuo-spatial conception of the changing gradient of
the graph itself.

Students who follow a
locally straight approach are 4

far better at drawing the
gradient curve at a given
point. They can just look
along the curve and see the
changing gradient and
sketch the requisite curve.
For instance, given the
graph of cosx, as x increases
from zero, the gradient of
the graph starts at zero,
moves increasingly
negative until at n/2 the
gradient is (about) 1, then
it becomes less negative till
the gradient is zero at 7E.
Looking along the curve
reveals the gradient
function looking like the
graph of sinx upside down, suggesting the gradient is sinx (Figure 11).
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Figure 11. The gradient of cosx
(drawn with Blokland et al., 2000)

The graphic approach to the calculus, first by magnification, and then by moving
along the curve to trace out the changing gradient gives an embodied view of the rate of
change. The principle of selective construction is being used again because the software
computes the gradient accurately and allows the user to interpret the graphs using
knowledge of standard graph shapes.

It fits exactly with the opening idea of solving a first order differential equation. If
the first derivative of a function is given, then the function has a locally straight graph,
so the original graph can be (approximately) reconstituted to build up a solution curve
that has the given gradient.

I also include the graph of the blancmange function bl(x) and other similar
functions which are fractals which reveal
the same detail at successive levels of
magnification. They never look straight
at any magnification, and so they are
nowhere differentiable. (This can be
proved by an embodied visuo-spatial
method that itself can be turned into a
formal proof (see Tall, 1982)). I can even
take a small copy of bl(x), say
n(x)=b/(1000x)/1000. The functions sinx
and sinx + n(x) differ by less than 1/1000,
so to a regular scale with the x-range, say
from 5 to +5, will reveal no difference
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between the two graphs on the computer screen. And yet the first is differentiable
everywhere and the second is differentiable nowhere. Thus a graphic approach to the
calculus offers insight into far deeper ideas about differentiability (Figure 12).

I do not have the space here to give full details of the extent to which a graphic
approach to calculus can lead on to the most subtle of formal ideas. Suffice it to say
that, by thinking carefully, one can develop embodied visual intuitions that can contain
the seeds of highly subtle formal mathematics. It is mainly a question of looking at the
right pictures in the right way. As Benoit Mandelbrot said:

When I came into this game, there was a total absence of intuition. One had to create
an intuition from scratch. Intuition as it was trained by the usual toolsthe hand, the
pencil and the rulerfound these shapes quite monstrous and pathological. The old
intuition was misleading. ... I've trained my intuition to accept as obvious shapes
which were initially rejected as absurd, and I find everyone else can do the same.

(Mandelbrot, quoted in Gleich, 1987, p. 102).

In a publication associated with this conference (Tall, to appear), I follow up this
quotation to see how visual intuition can support formal ideas in advanced mathematical
thinking. This, and other related papers can be found on my website:

http://www.warwick.ac.uk/staff/David.Tall/

A selection of relevant papers includes:

Tall (1985, 1991, 1992, 1993, 1995, 1997) and Di Giacomo & Tall (2000).

Summary
In this presentation, I have presented a theory of mathematics built on the

underlying vision and action of the human species, complementing theory with a range
of empirical evidence. This shows that learningmathematics involves building up
mental imagery in a sequence which is somewhat different from a formal logical
development. In the last century, Kaput wrote:

Anyone who presumes to describe the roles of technology in mathematics education
faces challenges akin to decribing a newly active volcan9 the mathematical
mountain is changing before our eyes... )(Kaput, 1992, p. 515.)

The volcano has been smouldering for a long time now and a shape of the future
seems to be developing. In this future I am confident that what will make mathematics
work to its best advantage are the qualities which make us human. But beyond that, I
consider it foolish to attempt to say where the next millennium will take us, for even a
decade is a long time at our present rate of development. Having taken part in previous
crystal-ball gazing operations (such as the Mathematical Association Report on
`Computers in the Mathematics Classroom' (Mann & Tall, 1992), I now know that our
vision of tomorrow soon becomes the history of yesterday. We then quoted the
following as an example of forward thinking from a previous report:

It is unlikely that the majority of pupils in this age range will find [a computer] so
efficient, useful and convenient a calculating aid as a slide rule or book of tables.

(Mathematical Association, Mathematics 11 to 16, 1974)

At this historical point I shall therefore refrain from suggesting what will happen
even in the near future. But one thing seems sure. As we stand at the beginning of a new
millennium (starting January 1", 2001), being a mathematician and an educator has
never been more exciting.
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